Transkripsiadalah proses penyalinan urutan nukleotida yang terdapat pada molekul DNA. ARN yang dibentuk oleh ADN ini berupa rantai tunggal polinukleotida. Tepatnya, ARB terbentuk dari ribonukleotida yaitu ikatan antara fosfat, gula pentosa (ribosa), dan basa nitrogen.

Pengertian Sintesis Protein Protein adalah suatu polipeptida yang terdiri dari rantai panjang asam amino yang merupakan hasil dari sintesis kode berupa informasi genetik dari DNA. Protein di dalam tubuh terbentuk melalui mekanisme yang disebut dengan sintesis protein. Sintesis protein adalah proses pembentukkan protein yang melibatkan DNA sebagai sumber materi genetik pengkode berbagai asam amino yang akan diolah menjadi rantai polipeptida. DNA merupakan sumber materi genetik yang terdapat di dalam nukleus, namun untuk melakukan proses sintesis proteinnya dilakukan di ribosom, untuk itu diperlukan perantara, yaitu RNA agar sintesis protein dapat berlangsung. Sintesis protein dikenal dengan istilah Dogma Sentral, yaitu rangkaian proses molekul DNA menjadi RNA, kemudian RNA menjadi protein. Sebelum masuk kedalam tahapan sintesis protein, akan dibahas terlebih dahulu mengenai struktur DNA dan RNA yang merupakan sumber materi genetik yang berperan dalam mengkode informasi untuk melakukan sintesis protein. Perbedaan Struktur DNA dengan RNA Struktur DNA Struktur RNA Kumpulan molekul nukelotida yang mengandung informasi genetik Berperan dalam penyimpan dan penyalur informasi genetik Terusun dari gula deoksiribosa, gugus fosfat dan basa nitrogen Tersusun dari gula ribosa, gugus fosfat dan basa nitrogen Terdiri dari dua untaian rantai nukleotida Hanya memiliki satu untaian rantai nukleotida Memiliki basa purin, yaitu Adenin A dan Guanin G serta basa pirimidin, yaitu Sitosin C dan Timin T RNA memiliki basa purin, yaitu Adenin A dan Guanin G serta basa pirimidin, yaitu Sitosin C, dan Urasil U Replikasi DNA Replikasi DNA adalah proses penggandaan DNA baru dari untaian DNA yang telah ada sebelumnya. Kode genetik kodon pada DNA yang dibawa dan dicetak akan membentuk RNA sebagai sumber informasi genetik untuk memulai sintesis protein. Proses atau tahapan replikasi DNA, yaitu Ikatan hidrogen DNA kromosomal diputus oleh enzim helikase dari arah 3’ ke 5’. DNA polymerase kemudian mulai membentuk salinan DNA baru dari titik P promotor ke T terminator. Leading strands adalah rantai berarah 3’ ke 5’ dimana replikasi DNA terus berjalan atau tidak terputus. Sedangkan, Lagging strands adalah rantai berarah 5’ ke 3’ dimana replikasi DNA terputus. Rantai yang mengalami lagging strands menghasilkan fragmen yang terputus-putus. Fragmen ini disebut dengan fragmen okazaki. Fragmen okazaki kemudian diperbaiki oleh enzim ligase untuk membentuk DNA baru. Maka terbentuklah DNA baru hasil replikasi dari DNA kromosomal Replikasi DNASumber Gambar Campbell, Neil A, & Reece, Jane B. 2008 Tahapan Sintesis Protein Proses sintesis protein dimulai ketika ikatan hidrogen DNA hasil replikasi dipecah atau diputus oleh enzim RNA polymerase. Kemudian rantai DNA tersebut dikode oleh mRNA. Sintesis protein terjadi melalui dua tahap, yaitu transkripsi yang dilanjutkan dengan translasi. Tahapan Sintesis ProteinSumber Gambar Campbell, N. 2005 A. Transkripsi Transkripsi adalah proses penyalinan informasi DNA kepada mRNA. Proses ini terjadi di dalam nukleus dan dikatalisasi oleh enzim RNA polymerase. Transkripsi hanya terjadi pada satu untai rantai DNA yang mengandung kelompok gen tertentu saja. Terdapat beberapa tahapan pada proses transkripsi, yaitu Tahapan TranskripsiSumber Gambar Purnomo, Sudjno, Trijoko, & S Hadisusanti. 2009 Inisiasi Permulaan Transkripsi Tahapan inisiasi, yaitu sebagai berikut RNA polymerase melekat pada daerah promoter atau pangkal transkripsi untuk memulai transkripsi. RNA polymerase kemudian berikatan dengan kumpulan protein sehingga membentuk kompleks inisiasi transkripsi. RNA polymerase membuka untaian rantai ganda DNA. Elongasi Pemanjangan Transkripsi Tahapan elongasi, yaitu sebagai berikut Setelah rantai ganda DNA terbuka, RNA polymerase kemudian meyusun untaian nukleotida-nukleotida RNA dari arah 5’ ke 3’ sesuai dengan pasangan basa nitrogennya sehingga terjadi pemanjangan RNA. RNA akan membentuk pasangan basa Adenin A dengan Urasil U. Terminasi Pengakhiran Transkripsi Tahapan terminasi, yaitu sebagai berikut Terminasi terjadi pada daerah terminator. Daerah ini memiliki urutan DNA yang berfungsi untuk menghentikan proses transkripsi. Rantai DNA menyatu kembali kemudian RNA polymerase dan mRNA yang telah terbentuk akan terlepas dari DNA. mRNA Messenger RNA, merupakan RNA yang mengandung kode genetik kodon hasil transkripsi basa nitrogen pada DNA yang menjadi cetakan untuk menjadi urutan asam amino polipeptida yang mengkode suatu protein tertentu. Kemudian mRNA akan keluar dari inti sel melalui pori-pori nukleus dan masuk ke dalam sitosol. B. Translasi Translasi adalah sintesis polipeptida dari mRNA untuk menentukan urutan-urutan asam amino yang akan membentuk suatu protein. Translasi terjadi di ribosom. Pada tahap ini, sel harus menerjemahkan kode gentik atau kodon. Kodon adalah tiga nukleotida pada urutan mRNA yang dapat diterjemahkan menjadi urutan asam amino. Urutan asam amino akan mengkode suatu protein spesifik. Terdapat beberapa tahapan pada proses translasi, yaitu Inisiasi Permulaan Translasi Ujung mRNA yang telah keluar dari nukleus akan berikatan dengan ribosom unit kecil melalui bantuan GTP dan enzim. Peristiwa tersebut disebut dengan kodon inisiasi Kodon inisiasi tersebut adalah AUG. Kodon AUG memberikan sinyal untuk memulai proses translasi. Kemudian, tRNA transfer RNA antikodon UAC yang membawa asam amino metionin melekat pada kodon inisiasi AUG. tRNA antikodon UAC merupakan komplementer dari kodon AUG. tRNA sendiri berfungsi untuk mengantarkan informasi genetik mRNA dari sitoplasma menuju ribosom untuk disusun menjadi protein. Inisiasi TranslasiSumber Gambar Campbell, N. 2005 Elongasi Pemanjangan Translasi Kodon yang dibawa oleh mRNA akan diterjemahkan satu persatu menjadi asam amino. asam amino berikutnya akan ditambahkan satu persatu-satu dari asam amino pertama metionin. Asam amino pertama metionin segera lepas dari ribosom, tRNA kembali ke sitoplasma untuk mengulangi fungsinya. tRNA berikutnya datang untuk berpasangan dengan kodon mRNA berikutnya. Setelah itu masing-masing asam amino akan digabungkan oleh tRNA. Gabungan asam amino tersebut akan membentuk rantai polipeptida yang dikatalisasi oleh rRNA. rRNA ribosomal RNA terdapat pada ribosom sub unit besar yang berfungsi sebagai enzim pembentuk ikatan peptida yang menyambungkan polipeptida-polipeptida antar asam amino. Elongasi TranslasiSumber Gambar Campbell, Neil A, & Reece, Jane B. 2008 Terminasi Pengakhiran Translasi Proses translasi berakhir ketika salah satu kodon stop mRNA UAA, UAG, dan UGA melekat pada ribosom. Polipeptida atau protein yang terbentuk akan terlepas dari ribosom dan terjadi pelepasan sub unit ribosom menjadi sub unit besar dan kecil. Protein yang telah disintesis mengalami proses post-translasi. Pada tahap ini, protein dapat berikatan dengan karbohidrat atau dipecah kembali menjadi beberapa polipeptida. Terminasi TranslasiSumber Gambar Campbell, Neil A, & Reece, Jane B. 2008 Daftar Pustaka Campbell, N. 2005. Biology. Ninth Edition. California The Benjamin/Cimmings Publishing Company, Inc. Campbell, Neil A, & Reece, Jane B. 2008. Biologi Jilid 1 Ed. 8. Jakarta Erlangga. Mader, 1998. Biology. 6th Edition. New York The McGraw-Hill Companies. Raven & Johnson. 1996. Biology. Fourth Edition. New York WBC/McGraw-Hill Companies, Inc. Purnomo, Sudjno, Trijoko, & S Hadisusanti. 2009. Biologi Kelas XI untuk SMA dan MA. Jakarta Pusat Perbukuan, Departemen Pendidikan Nasional Kontributor Dinda Muthi Selina, Alumni Biologi FMIPA UI

RNAduta (messenger-RNA, mRNA) adalah RNA yang sintesisnya diarahkan oleh gen pada berkas DNA sebagai pembawa pesan. Dengan kata lain, mRNA adalah RNA yang merupakan hasil transkripsi DNA dan menjadi perantara pembawa urutan protein dalam proses transkripsi.. Molekul mRNA kemudian berinteraksi dengan perangkat pensintesis protein dalam sel untuk memproduksi polipeptida.
- Protein adalah nutrisi yang dibutuhkan tubuh dalam jumlah besar karena membantu proses pembuatan energi dan juga sebagai pembangun beberapa organ tubuh makhluk hidup. Darimana kita memperoleh protein? Tentu saja dari makanan, namun tubuh kita juga dapat membentuk protein yang telah kita bahas pada metabolisme protein, protein terdiri dari ratusan bahkan ribuan asam amino tergantung pada jenis proteinnya. Pada materi kali ini kita akan mempelajari bagaimanakah pembuatan protein dalam tubuh manusia? Sintesis protein dalam tubuh terdiri dari 3 tahapan yaitu transkripsi dan translasi. Baca juga Hati-hati, Protein Urine Tinggi Bisa Jadi Tanda Penyakit Ginjal Transkripsi NURUL UTAMI Pembukaan ikatan basa DNA Sintesis protein dimulai dengan menyalin urutan DNA yang akan diekspresikan dalam inti sel. Proses transkripsi dimulai dari pemisahan ikatan hidrogen antar basa-basa nitrogen pada DNA oleh enzim helikase. Hal ini seperti kamu membuka ritlsleting, kamu membukanya dan memisahkan basa-basa nitrogen yang saling berikatan. Ritsleting DNA yang terbuka ini adalah cetakan dari protein yang akan dibuat nanti. NURUL UTAMI RNA polimerase yang sedang bekerja RAIMARDA Dua proses transkripsi dan translasi ialah dalam hal ini untuk mensintesis protein dari cetakan DNA lalu menjadi RNA yang nanti akan mengahasilkan hasil akhir berupa polipeptida. Karena DNA tidak bisa keluar dari nukleus, DNA kemudian memproduksi mRNA menggunakan enzim RNA polimerase. Kemudian mRNA akan menempel pada cetakan tersebut dengan menyatukan basa nitrogennya dengan basa nitrogen DNA cetakan. Dilansir dari BBC, mRNA memiliki basa nitrogen yang sama, kecuali timin yang digantikan oleh juga Proses Metabolisme Protein Bagaimana Tubuh Mencerna Protein? mRNA kemudian membawa “cetak biru” pembuatan protein keluar dari inti sel masuk ke cairan sitoplasma dan menempel pada ribosom. Translasi mRNA yang masuk ke ribosom kemudian mengalami proses translasi, translasi adalah proses pembacaan kode genetik cetak biru DNA. Dilansir dari Science Learning Hub, tRNA pada ribosom membaca urutan asam amino dalam mRNA untuk dibuat menjadi protein baru. Satu tRNA membaca 3 basa pada mRNA yang disebut sebagai kodon. tRNA yang telah membaca informasi genetik, kemudian keluar dari ribosom untuk membawa asam amino yang sesuai. Asam amino tidak disintesis dalam proses ini, tetapi didapatkan dari hasil metabolisme protein. Baca juga 5 Kandungan Gizi Jamur Pangan, dari Protein hingga Serat Dilansir dari National Center for Biotechnology Information, tRNA mengikat asam amino yang dibutuhkan dengan energi ATP. Asam amino kemudian diikat dengan ikatan peptida kovalen oleh enzim peptidil transferase membentuk polipeptida dan dibantu oleh energi dari tRNA. Polipeptida ini kemudian dilipat sedemikian rupa sehingga membentuk satu protein yang fungsional. Jadi dapat disimpulkan bahwa protein yang dikonsumsi oleh manusia, dicernah menjadi asam amino. Asam amino tersebut kemudian digunakan kembali untuk membuat protein dalam bentuk lain yang dibutuhkan oleh tubuh. Baca juga Asupan Protein di Pagi Hari, Efektif Jaga Massa Otot Dapatkan update berita pilihan dan breaking news setiap hari dari Mari bergabung di Grup Telegram " News Update", caranya klik link kemudian join. Anda harus install aplikasi Telegram terlebih dulu di ponsel. Transkripsimerupakan bagian dari rangkaian ekspresi genetik pengertian asli transkripsi adalah alih aksara atau penyalinan. Rna duta mrna rantai tunggal panjang yang tersusun atas ratusan nukleotida. Transkripsi adalah proses penyalinan informasi dna kepada mrna. Rna ini terbentuk melalui proses transkripsi di dalam inti sel oleh dna.
Dalam genetika, transkripsi bahasa Inggris transcription adalah pembuatan RNA terutama mRNA dengan menyalin sebagian berkas Deoxyribonucleic acid oleh enzim RNA polimerase.[i] Proses transkripsi menghasilkan mRNA dari Deoxyribonucleic acid di dalam sel yang menjadi langkah awal sintesis protein.[2] Transkripsi merupakan bagian dari rangkaian ekspresi genetik. Pengertian asli “transkripsi” adalah alih aksara atau penyalinan. Di sini, yang dimaksud adalah mengubah “teks” DNA menjadi RNA. Sebenarnya, yang berubah hanyalah basa nitrogen timina di Dna yang pada RNA digantikan oleh urasil. Proses [sunting sunting sumber] Diagram sederhana dari proses sintesis mRNA. Enzim tidak ditampilkan. Transkripsi berlangsung di dalam inti sel atau di dalam matriks mitokondria dan plastida. Transkripsi dapat dipicu oleh rangsangan dari luar maupun tanpa rangsangan. Pada proses tanpa rangsangan, transkripsi berlangsung terus-menerus gen-gennya disebut gen konstitutif atau “gen pengurus rumah”, house-keeping genes. Sementara itu, gen yang memerlukan rangsangan biasanya gen yang hanya diproduksi sewaktu-waktu; gennya disebut gen regulatorik karena biasanya mengatur mekanisme khusus. Rangsangan akan mengaktifkan bagian promoter inti,[3] segmen gen yang berfungsi sebagai pencerap RNA polimerase[4] yang terletak di bagian hulu bagian yang akan disalin disebut transcription unit, tidak jauh dari ujung 5′ gen.[4] Promoter inti terdiri dari kotak TATA, kotak CCAAT dan kotak GC.[5] Sebelum RNA polimerase dapat terikat pada promoter inti, faktor transkripsi TFIID akan membentuk kompleks dengan kotak TATA.[half dozen] Inhibitor dapat mengikat pada kompleks TFIID-TATA dan mencegah terjadinya kompleks dengan faktor transkripsi lain, namun hal ini dapat dicegah dengan TFIIA yang membentuk kompleks DA-TATA. Setelah itu TFIIB dan TFIIF akan turut terikat membentuk kompleks DABF-TATA. Setelah itu RNA polimerase akan mengikat pada DABF-TATA, dan disusul dengan TFIIE, TFIIH dan TFIIJ. Kompleks tersebut terjadi pada bagian kotak TATA yang terletak sekitar 10-25 pasangan basa di bagian hulu upstream dari kodon mulai AUG. Adanya faktor transkripsi ini akan menarik enzim RNA polimerase mendekat ke Dna dan kemudian menempatkan diri pada tempat yang sesuai dengan kodon mulai TAC pada berkas DNA. Berkas DNA yang ditempel oleh RNA polimerase disebut sebagai berkas templat, sementara berkas pasangannya disebut sebagai berkas kode karena memiliki urutan basa yang sama dengan RNA yang dibuat. Pada awal transkripsi, enzim guaniltransferase menambahkan gugus m7Gppp pada ujung 5′ untai pre-mRNA.[7] Sejumlah ATP diperlukan untuk membuat RNA polimerase mulai bergerak dari ujung iii’ ujung karboksil berkas templat ke arah ujung five’ ujung amino. pre-mRNA yang terbentuk dengan demikian berarah 5′ → 3′. Pergerakan RNA polimerase akan berhenti apabila ia menemui urutan basa yang sesuai dengan kodon berhenti, dan deret AAUAAA akan ditambahkan pada pangkal 3′ pre-mRNA.[seven] Setelah proses selesai, RNA polimerase akan lepas dari DNA, sedangkan pre-mRNA akan teriris sekitar twenty bp dari deret AAUAAA dan sebuah enzim, poliA polimerase akan menambahkan deret antara 150 – 200 adenosina untuk membentuk pre-mRNA yang lengkap yang disebut mRNA primer.[7] Tergantung intensitasnya, dalam satu berkas transcription unit of measurement sejumlah RNA polimerase dapat bekerja secara simultan. Intensitas transkripsi ditentukan oleh keadaan di sejumlah bagian tertentu pada DNA. Ada bagian yang disebut suppressor yang menekan intensitas, dan ada yang disebut enhancer yang memperkuatnya. Hasil [sunting sunting sumber] Hasil transkripsi yaitu berkas RNA yang masih “mentah” yang disebut mRNA primer.[8] Di dalamnya terdapat fragmen berkas untuk poly peptide yang mengatur dan membantu sintesis protein translasi selain fragmen untuk dilanjutkan dalam translasi sendiri, ditambah dengan bagian yang nantinya akan dipotong intron. Berkas RNA ini selanjutnya akan mengalami proses yang disebut sebagai proses pascatranskripsi post-transcriptional procedure. Langkah utama [sunting sunting sumber] Transkripsi dibagi menjadi inisiasi, pelepasan promotor, perpanjangan, dan penghentian.[nine] Inisiasi [sunting sunting sumber] Transkripsi dimulai dengan pengikatan RNA polimerase, bersama dengan satu atau lebih faktor transkripsi umum, ke urutan DNA spesifik yang disebut sebagai “promotor” untuk membentuk “kompleks tertutup” RNA polimerase-promotor. Dalam “kompleks tertutup”, DNA promotor masih sepenuhnya beruntai ganda.[10] Perpanjangan elongasi [sunting sunting sumber] Satu untai Deoxyribonucleic acid, untai cetakan atau untai non-penyandi, digunakan sebagai cetakan untuk sintesis RNA. Saat transkripsi berlangsung, RNA polimerase melintasi untai cetakan dan menggunakan komplementaritas pasangan basa dengan cetakan DNA membentuk salinan RNA yang memanjang selama traversal. Meskipun RNA polimerase melintasi untai cetakan dari iii’ → 5′, untai pengkode non-templat dan RNA yang baru terbentuk juga dapat digunakan sebagai titik referensi, sehingga transkripsi dapat digambarkan terjadi five’ → iii’. Ini menghasilkan molekul RNA dari v’ → 3′, salinan persis dari untai pengkode kecuali timin diganti dengan urasil, dan nukleotida terdiri dari gula ribosa v-karbon.[11] [12] Diagram sederhana dari perpanjangan transkripsi. Penghentian terminasi [sunting sunting sumber] Bakteri menggunakan dua strategi berbeda untuk terminasi transkripsi – terminasi tidak tergantung Rho dan terminasi tergantung Rho. Dalam penghentian tidak tergantung Rho, transkripsi RNA berhenti ketika molekul RNA yang baru disintesis membentuk loop jepit rambut kaya Thousand-C diikuti dengan lepasnya U. Ketika jepit rambut terbentuk, tekanan mekanis memutuskan ikatan rU-dA yang lemah, mengisi hibrid DNA-RNA. Hal ini menarik transkrip poli-U keluar dari situs aktif RNA polimerase, dan mengakhiri transkripsi. Dalam terminasi tergantung Rho, faktor protein yang disebut “Rho” mengacaukan interaksi antara cetakan dan mRNA, sehingga melepaskan mRNA yang baru disintesis dari kompleks elongasi.[xiii] Terminasi transkripsi pada eukariot kurang dipahami dengan baik dibandingkan pada bakteri, tetapi melibatkan pembelahan transkrip baru diikuti dengan penambahan adenin tidak tergantung cetakan pada ujung iii’ yang baru, dalam proses yang disebut poliadenilasi. Transkripsi terbalik [sunting sunting sumber] Skema dari transkripsi terbalik. Beberapa virus seperti HIV, penyebab AIDS, memiliki kemampuan untuk mentranskripsi RNA menjadi Dna. HIV memiliki genom RNA yang ditranskripsi terbalik menjadi Dna. Dna yang dihasilkan dapat digabungkan dengan genom DNA sel inang. Enzim utama yang bertanggung jawab untuk sintesis DNA dari cetakan RNA disebut reverse transkriptase. Dalam kasus HIV, opposite transkriptase bertanggung jawab untuk mensintesis untai DNA komplementer cDNA pada genom RNA virus. Enzim ribonuklease H kemudian memotong untai RNA, dan reverse transkriptase mensintesis untai komplementer Dna untuk membentuk struktur Dna heliks ganda “cDNA”. cDNA diintegrasikan ke dalam genom sel inang oleh enzim integrase, yang menyebabkan sel inang menghasilkan protein virus yang berkumpul kembali menjadi partikel virus baru. Kemudian, sel inang yaitu limfosit T mengalami kematian sel terprogram apoptosis.[14] Namun, pada retrovirus lain, sel inang tetap utuh saat virus keluar dari sel. Beberapa sel eukariotik mengandung enzim dengan aktivitas transkripsi terbalik yang disebut telomerase. Telomerase adalah reverse transkriptase yang memperpanjang ujung kromosom linier. Telomerase membawa cetakan RNA dari mana ia mensintesis urutan berulang Deoxyribonucleic acid, atau Dna “sampah”. Urutan Deoxyribonucleic acid yang berulang ini disebut telomer dan dapat dianggap sebagai “tutup” untuk kromosom. Ini penting karena setiap kali kromosom linier digandakan, itu dipersingkat. Dengan Dna “junk” atau “tutup” di ujung kromosom, pemendekan menghilangkan beberapa urutan berulang yang tidak esensial daripada urutan DNA penyandi protein, yang lebih jauh dari ujung kromosom. Telomerase sering diaktifkan dalam sel kanker untuk memungkinkan sel kanker menduplikasi genom mereka tanpa kehilangan urutan Deoxyribonucleic acid pengkode poly peptide yang penting. Aktivasi telomerase bisa menjadi bagian dari proses yang memungkinkan sel kanker menjadi abadi. Faktor keabadian kanker melalui pemanjangan telomer karena telomerase telah terbukti terjadi pada 90% dari semua tumor karsinogenik in vivo dengan x% sisanya menggunakan rute pemeliharaan telomer alternatif yang disebut pemanjangan alternatif telomer culling lengthening of telomeres, ALT.[15] Inhibitor [sunting sunting sumber] Inhibitor transkripsi dapat digunakan sebagai antibiotik terhadap patogen, misal bakteri antibakteri dan jamur antijamur. Contoh antibakteri tersebut adalah rifampisin, yang menghambat transkripsi Dna bakteri dengan menghambat RNA polimerase tergantung DNA dengan mengikat subunit beta-nya, sedangkan eight-hidroksikuinolin adalah penghambat transkripsi antijamur.[sixteen] [17] Efek metilasi histon juga dapat bekerja untuk menghambat transkripsi. Produk alami bioaktif yang kuat seperti triptolide yang menghambat transkripsi mamalia melalui penghambatan subunit XPB dari faktor transkripsi umum TFIIH baru-baru ini dilaporkan sebagai konjugat glukosa untuk menargetkan sel kanker hipoksia dengan peningkatan ekspresi transporter glukosa.[18] Inhibitor endogen [sunting sunting sumber] Pada vertebrata, sebagian besar promotor gen mengandung pulau CpG dengan banyak situs CpG.[xix] Ketika banyak situs CpG promotor gen termetilasi, gen menjadi terhambat dibungkam.[20] Kanker kolorektal biasanya memiliki three hingga 6 mutasi pengemudi dan 33 hingga 66 mutasi genetik hitchhiking atau penumpang.[21] Namun, penghambatan transkripsi pembungkaman mungkin lebih penting dalam menyebabkan perkembangan menjadi kanker dibandingkan kejadian mutasi. Misalnya pada kanker kolorektal, sekitar 600 hingga 800 gen dihambat secara transkripsi oleh metilasi pulau CpG.[22] [23] Penekanan transkripsional pada kanker juga dapat terjadi melalui mekanisme epigenetik lainnya, seperti perubahan ekspresi microRNA.[24] Pada kanker payudara, penekanan transkripsional BRCA1 dapat terjadi lebih sering oleh microRNA-182 yang diekspresikan secara berlebihan daripada oleh hipermetilasi promotor BRCA1.[25] Referensi [sunting sunting sumber] ^ Inggris Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William Chiliad Gelbart 2000. An Introduction to Genetic Analysis. Academy of British Columbia, University of California, Harvard University edisi ke-7. West. H. Freeman. hlm. Transcription and RNA polymerase. ISBN 0-7167-3520-2. Diakses tanggal 2010-08-17 . ^ Susilawati dan Bachtiar, N. 2018. Biologi Dasar Terintegrasi PDF. Pekanbaru Kreasi Edukasi. hlm. 153. ISBN 978-602-6879-99-8. ^ Inggris Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William M Gelbart 2000. An Introduction to Genetic Analysis. University of British Columbia, University of California, Harvard University edisi ke-7. W. H. Freeman. hlm. Transcription an overview of gene regulation in eukaryotes. ISBN 0-7167-3520-2. Diakses tanggal 2010-08-17 . ^ a b Inggris Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William M Gelbart 2000. An Introduction to Genetic Assay. University of British Columbia, Academy of California, Harvard University edisi ke-7. Due west. H. Freeman. hlm. Glossary – Promoter. ISBN 0-7167-3520-2. Diakses tanggal 2010-08-17 . ^ Inggris Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William M Gelbart 2000. An Introduction to Genetic Analysis. Academy of British Columbia, University of California, Harvard Academy edisi ke-7. Due west. H. Freeman. hlm. Figure 11-25. The promoter region in college eukaryotes. ISBN 0-7167-3520-two. Diakses tanggal 2010-08-17 . ^ Inggris Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William One thousand Gelbart 2000. An Introduction to Genetic Assay. Academy of British Columbia, Academy of California, Harvard University edisi ke-7. W. H. Freeman. hlm. Figure 11-29. Assembly of the RNA polymerase 2 initiation complex. ISBN 0-7167-3520-2. Diakses tanggal 2010-08-17 . ^ a b c Inggris Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William One thousand Gelbart 2000. An Introduction to Genetic Analysis. University of British Columbia, University of California, Harvard Academy edisi ke-7. W. H. Freeman. hlm. Figure 10-fifteen. Processing of principal transcript. ISBN 0-7167-3520-2. Diakses tanggal 2010-08-17 . ^ Inggris Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William M Gelbart 2000. An Introduction to Genetic Assay. University of British Columbia, University of California, Harvard University edisi ke-7. W. H. Freeman. hlm. Eukaryotic RNA. ISBN 0-7167-3520-two. Diakses tanggal 2010-08-17 . ^ Watson JD, Baker TA, Bell SP, Gann AA, Levine M, Losick RM 2013. Molecular Biology of the Gene edisi ke-7th. Pearson. ^ Henderson, Kate L.; Felth, Lindsey C.; Molzahn, Cristen M.; Shkel, Irina; Wang, Si; Chhabra, Munish; Ruff, Emily F.; Bieter, Lauren; Kraft, Joseph East. 2017-04-11. “Mechanism of transcription initiation and promoter escape by E . coli RNA polymerase”. Proceedings of the National University of Sciences dalam bahasa Inggris. 114 fifteen E3032–E3040. doi ISSN 0027-8424. PMC5393250 . PMID 28348246. ^ Reines, D.; Conaway, R. C.; Conaway, J. W. 1999-06. “Mechanism and regulation of transcriptional elongation by RNA polymerase Two”. Current Opinion in Jail cell Biology. 11 iii 342–346. doi ISSN 0955-0674. PMC3371606 . PMID 10395562. ^ Imashimizu, Masahiko; Shimamoto, Nobuo; Oshima, Taku; Kashlev, Mikhail 2014. “Transcription elongation. Heterogeneous tracking of RNA polymerase and its biological implications”. Transcription. 5 1 e28285. doi ISSN 2154-1272. PMC4214235 . PMID 25764114. ^ Banerjee, Sharmistha; Chalissery, Jisha; Bandey, Irfan; Sen, Ranjan 2006-02. “Rho-dependent transcription termination more questions than answers”. Periodical of Microbiology Seoul, Korea. 44 ane 11–22. ISSN 1225-8873. PMC1838574 . PMID 16554712. ^ Cummins, N. W.; Badley, A. D. 2010-11-11. “Mechanisms of HIV-associated lymphocyte apoptosis 2010”. Cell Death & Disease. 1 e99. doi ISSN 2041-4889. PMC3032328 . PMID 21368875. ^ Cesare, Anthony J.; Reddel, Roger R. 2010-05. “Culling lengthening of telomeres models, mechanisms and implications”. Nature Reviews. Genetics. 11 5 319–330. doi ISSN 1471-0064. PMID 20351727. ^ Campbell, Elizabeth A.; Korzheva, Nataliya; Mustaev, Arkady; Murakami, Katsuhiko; Nair, Satish; Goldfarb, Alex; Darst, Seth A. 2001-03. “Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase”. Cell dalam bahasa Inggris. 104 6 901–912. doi ^ Pippi, Bruna; Reginatto, Paula; Machado, Gabriella da Rosa Monte; Bergamo, Vanessa Zafaneli; Lana, Daiane Flores Dalla; Teixeira, Mario Lettieri; Franco, Lucas Lopardi; Alves, Ricardo José; Andrade, Saulo Fernandes 2017-ten-01. “Evaluation of 8-Hydroxyquinoline Derivatives as Hits for Antifungal Drug Design”. Medical Mycology. 55 7 763–773. doi ISSN 1460-2709. PMID 28159993. ^ Datan, Emmanuel; Minn, Il; Xu, Peng; He, Qing-Li; Ahn, Hye-Hyun; Yu, Biao; Pomper, Martin One thousand.; Liu, Jun O. 2020-09-25. “A Glucose-Triptolide Cohabit Selectively Targets Cancer Cells nether Hypoxia”. iScience. 23 9 101536. doi ISSN 2589-0042. PMC7509213 . ^ Saxonov, Serge; Berg, Paul; Brutlag, Douglas L. 2006-01-31. “A genome-wide analysis of CpG dinucleotides in the human genome distinguishes 2 distinct classes of promoters”. Proceedings of the National University of Sciences of the United states. 103 v 1412–1417. doi ISSN 0027-8424. PMC1345710 . PMID 16432200. ^ Bird, Adrian 2002-01-01. “Deoxyribonucleic acid methylation patterns and epigenetic memory”. Genes & Development. 16 1 6–21. doi ISSN 0890-9369. PMID 11782440. ^ Vogelstein, Bert; Papadopoulos, Nickolas; Velculescu, Victor E.; Zhou, Shibin; Diaz, Luis A.; Kinzler, Kenneth W. 2013-03-29. “Cancer genome landscapes”. Science New York, 339 6127 1546–1558. doi ISSN 1095-9203. PMC3749880 . PMID 23539594. ^ Toyota, M.; Ahuja, N.; Ohe-Toyota, M.; Herman, J. G.; Baylin, S. B.; Issa, J. P. 1999-07-20. “CpG island methylator phenotype in colorectal cancer”. Proceedings of the National University of Sciences of the Usa of America. 96 xv 8681–8686. doi ISSN 0027-8424. PMC17576 . PMID 10411935. ^ Curtin, Karen; Slattery, Martha L.; Samowitz, Wade S. 2011-04-12. “CpG island methylation in colorectal cancer past, present and futurity”. Pathology Research International. 2011 902674. doi ISSN 2042-003X. PMC3090226 . PMID 21559209. ^ Tessitore, Alessandra; Cicciarelli, Germana; Del Vecchio, Filippo; Gaggiano, Agata; Verzella, Daniela; Fischietti, Mariafausta; Vecchiotti, Davide; Capece, Daria; Zazzeroni, Francesca 2014. “MicroRNAs in the Deoxyribonucleic acid Impairment/Repair Network and Cancer”. International Periodical of Genomics. 2014 820248. doi ISSN 2314-436X. PMC3926391 . PMID 24616890. ^ Stefansson, Olafur A.; Esteller, Manel 2013-ten. “Epigenetic Modifications in Breast Cancer and Their Role in Personalized Medicine”. The American Journal of Pathology dalam bahasa Inggris. 183 iv 1052–1063. doi Lihat pula [sunting sunting sumber] Replikasi DNA Translasi bahan genetik Pranala luar [sunting sunting sumber] Animasi tentang transkripsi di youtube.
Saattranskripsi berlangsung terjadi pemindahan informasi genetic dari DNA ke RNA. Transkripsi terjadi dengan bantuan enzim polymerase. Proses transkripsi, sesuai namanya merupakan proses pencetakan atau penulisan ulang atau menyalin ulang DNA ke dalam mRNA. Proses ini terjadi di dalam nukleus. Pada tahap ini, setiap basa nitrogen DNA dikodekan ke dalam basa nitrogen RNA.
– Dalam mempelajari genetika, ada yang disebut sebagai promoter. Promoter adalah segmen DNA yang berfungsi sebagai tempat awal RNA polimerasi berikatan untuk proses transkripsi. Berikut adalah penjelasan tentang promoter! Pengertian promoter Promoter adalah bagian atau segmen DNA yang berada tepat sebelum gen yang akan ditranskripsi. Artinya, secara sederhana promoter adalah suatu wilayah yang menandai awal dari dari Biology LibreTexts, wilayah promoter bisa pendek hanya terdiri dari beberapa nukleotida atau cukup panjang terdiri dari ratusan nukleotida. Promoter menjadi awal, membuat kita dapat membedakan satu gen dengan gen lainnya dalam rantai panang gen yang menyusun DNA. Baca juga Struktur dan Fungsi Kromosom Sentromer, Lokus Gen Sampai Telomer Fungsi promoter Promoter berperan penting dalam transkripsi atau proses penyalinan DNA untuk membuat cetak biru pembuatan protein. Berikut adalah fungsi promoter dalam proses transkripsi DNA!Menentukan arah transkripsi Promoter bagaikan kepala yang menandai awal dari gen. Seperti yang kita ketahui, gen terbentuk dari urutan basa-basa nukleotida tertentu. Perbedaan urutan basa tersebut akan menyebabkan kesalahan dalam pembuatan protein. Promoter menunjukkan arah transkripsi, dari hulu gen ke bagian hilir. Sehingga, proses transkripsi gen tidak akan terjadi terbalik dan tidak akan menyebabkan kesalahan. Tempat melekatnya RNA polimerase Dilansir dari National Human Genome Research Institute, promoter memiliki fungsi pengikatan untuk enzim yang digunakan untuk membuat molekul messenger RNA mRNA. Baca juga RNA Pengertian, Struktur, dan Fungsi Enzim tersebut adalah RNA polimerasi yang bertugas untuk menyalin urutan basa nukleotida DNA menjadi mRNA. mRNA dibuat sebagai penyampai pesan hasil transkripsi, karena DNA tidak bisa keluar dari inti sel. Tempat dimulainya transkripsi DNA Dilansir dari Khan Academy, promoter berisi urutan DNA yang memungkinkan RNA polimerasi atau protein pembantunya faktor transkripsi basal menempel pada DNA.
1 Transkripsi. Transkripsi adalah proses pencetakan RNA oleh DNA. RNA yang terbentuk dibedakan menjadi tiga, yaitu tRNA, mRNA, dan rRNA. Urutan asam amino akan ditentukan oleh basa nitrogen yang menempel di rantai mRNA. Transkripsi terdiri dari tiga tahap, yaitu inisiasi (permulaan), elongasi (pemanjangan), dan terminasi (pengakhiran).

Salah satu hasil transkripsi dna adalah rna struktural yaitu .....1. Salah satu hasil transkripsi dna adalah rna struktural yaitu .....2. Salah satu hasil transkripsi DNA adalah RNA struktural, yaitu3. 1. dna yang melakukan transkripsi adalah2. hasil dna transkripsi adalah3. rna yang melakukan translasi adalah4. rna hasil translasi adalah4. jika urutan basa pita DNA yang adalah 5 GTSAT 3 maka urutan basa dalm RNA duta hasil transkripsi5. kenapa dna memiliki kemampuan melakukan transkripsi membentuk rna-d?6. Mengapa proses transkripsi DNA dapat dikatakan sebagai biosintesis RNA7. Urutan nukleotida rna berikut yang terjadi selama proses transkripsi segmen dna8. jika urutan basa pita DNA yg akn ditranskripsi adalah 5' GTCAT 3, maka urutan basa dalam RNA duta hasil transkripsi adalah9. Jika urutan basa pita DNA yang ditranskripsi adalah 5’ GTSAT 3’ , maka urutan basa dalam RNA duta hasil transkripsi adalah10. Mana yang lebih akurat, replikasi dna atau transkripsi rna? jelaskan11. salah satu enzim yang dimiliki oleh virus HIV adalah reverse transcriptase, yang berfungsi untuk.. a. transkripsi RNA virus b. transkripsi DNA ke RNA c. transkripsi RNA dalam sel inang d. transkripsi DNA dalam genom virus e. transkripsi RNA ke DNA12. transkripsi merupakan sintesis RNA pada suatu cetakan DNA dengan menggunalan enzim13. salah satu hasil transkripsi dna adalah rna struktural yaitu, a mrnab trnac rrna d mirnae irna14. salah satu hasil transkripsi dna adalah rna struktural yaitu, a mrna b trna c rrna d mirna e irna15. jika urutan basa pada RNA-d yang di transkripsikan oleh untaian DNA sense adalah UGCUAUUGACAG maka urutan basa pada DNA sense adalah ..16. Mengapa DNA memeiliki kemampuan melakukan transkripsi membentuk RNA-d? Jelaskan!17. Mengapa DNA memiliki kemampuan melakukan transkripsi membentuk rna-d? Jelaskan! 18. mengapa DNA memiliki kmampuan melakukan transkripsi membentuk RNA d?jelaskan19. 18. Rantai DNA melakukan transkripsi sebagai berikut! RNA yang terbentuk dari hasil transkripsi di atas adalah?​20. transkripsi merupakan sintesis RNA pada suatu cetakan DNA dengan menggunalan enzim 1. Salah satu hasil transkripsi dna adalah rna struktural yaitu .....JawabanHasil transkripsi yaitu berkas RNA yang masih "mentah" yang disebut mRNA primer. Di dalamnya terdapat fragmen berkas untuk protein yang mengatur dan membantu sintesis protein translasi selain fragmen untuk dilanjutkan dalam translasi sendiri, ditambah dengan bagian yang nantinya akan dipotong intron. 2. Salah satu hasil transkripsi DNA adalah RNA struktural, yaitu kalo ga salah asam amino 3. 1. dna yang melakukan transkripsi adalah2. hasil dna transkripsi adalah3. rna yang melakukan translasi adalah4. rna hasil translasi adalah 1. DNA Sense2. RNA messengger3. RNA transfer4. Asam Amino membentuk polipeptida 4. jika urutan basa pita DNA yang adalah 5 GTSAT 3 maka urutan basa dalm RNA duta hasil transkripsi Urutan basa hasil transkripsi3' CAGUA 5' 5. kenapa dna memiliki kemampuan melakukan transkripsi membentuk rna-d? DNA merupakan asam nukleat yang berfungsi untuk menyimpan informasi atau materi genetik. DNA mempunyai kemampuan melakukan transkripsi, yaitu proses pembentukan RNA yang berasal dari pemindahan materi genetik DNA pada RNA. Kemampuan ini disebabkan adanya enzim polimerase. Dalam suatu DNA, terdapat beberapa enzim polimerase. Selama proses transkripsi terjadi, enzim polimerase ini berfungsi untuk menguraikan DNA dan kemudian menyalin bagian-bagian tertentu dari DNA kepada RNA. Tanpa adanya enzim polimerase ini maka akan menyebabkan kesalahan penyalinan informasi genetik dari DNA ke RNA bahkan dapat menggagalkan proses penyalinan tersebut. Hal ini tentunya dapat mengakibatkan terhambatnya proses transkripsi pada DNA dan tidak ada RNA yang akan terbentuk. 6. Mengapa proses transkripsi DNA dapat dikatakan sebagai biosintesis RNAProses transkripsi DNA dapat dikatakan sebagai biosintesis RNA karena membentuk rantai RNA. RNA yang dibentuk pada proses transkripsi adalah RNA duta. RNA duta berfungsi membawa informasi genetik dari DNA. Pembahasan DNA adalah asam nukleat yang menyimpan informasi biologis dari setiap makhluk hidup dan beberapa virus. Segmen DNA yang membawa informasi genetik disebut gen, tetapi urutan DNA memiliki tujuan struktural, atau terlibat dalam pengaturan penggunaan informasi genetik. Struktur kimia DNA berupa makromolekul kompleks yang terdiri dari tiga macam molekul, yaitu gula pentosa deoksiribosa, asam fosfat, dan basa nitrogen. Basa nitrogen DNA terdiri dari golongan purin, yaitu adenin dan guanin, serta golongan pirimidin yaitu timin dan sitosin. Pada DNA, basa nitrogen purin dan pirimidin selalu berikatan, yang dihubungkan dengan ikatan hidrogen. Ada 2 ikatan hidrogen yang menghubungkan basa Adenin dengan basa Timin/Urasil. Adapun 3 ikatan hidrogen menghubungkan basa Guanin dengan lebih lanjut tentang DNA dan RNA di Sintesis protein adalah pembentukan protein dari asam amino-asam amino. Sintesis protein melibatkan DNA, RNA, dan ribosom. Sintesis protein dilakukan melalui dua tahap, yaitu tahap transkripsi dan tahap translasi. 1. Transkripsi Proses transkripsi, merupakan proses pencetakan atau penulisan ulang DNA ke dalam mRNA kodon. Proses ini terjadi di dalam nukleus. Pada tahap ini, setiap basa nitrogen DNA dikodekan ke dalam basa nitrogen RNA. Misalnya, jika urutan basa nitrogen DNA adalah ACT TAC CAA, maka urutan mRNA hasil transkripsi adalah UGA AUG GTU. 2. Translasi Tahap translasi adalah tahap penerjemahan kode dari mRNA oleh tRNA ke dalam urutan asam amino. Tahap ini terjadi di dalam sitoplasma dengan bantuan ribosom. Ribosom merupakan salah satu organel di sitoplasma yang berperan dalam sintesis protein. Ribosom terdiri dari dua bagian, yaitu subunit besar dan subunit kecil. Ribosom mengandung protein dan rRNA RNA ribosom. Pada tahap translasi kode genetik atau kodon dari mRNA diterjemahkan menjadi rangkaian asam amino. Kodon merupakan urutan tiga basa nitrogen pada mRNA. Setiap urutan tiga basa tersebut memiliki arti khusus yang dapat diterjemahkan dalam proses translasi. Urutan tiga basa tersebut dikenal sebagai triplet. Misalnya, AUG, AAA, UCA, dan UUA. Translasi dibagi menjadi 3 tahap yaitu 1. InisiasiTranslasi diawali ketika mRNA dan tRNA inisiator berikatan dengan ribosom subunit kecil. Molekul tRNA inisiator merupakan molekul yang membawa asam amino pertama dan merupakan komplemen kodon AUG kodon start. Biasanya membawa asam amino metionin. 2. ElongasiElongasi terjadi setelah tRNA kedua berikatan dengan kodon berikutnya setelah kodon start. Misalnya, kodon lain setelah kodon start adalah CUC, maka akan berikatan dengan antikodon tRNA GAG yang membawa asam amino asam glutamat. Kedua asam amino, metionin dan asam glutamat, akan berikatan dengan bantuan enzim peptidil transferase. 3. Terminasi Translasi akan terhenti ketika ribosom mencapai kodon stop pada mRNA. Kodon stop yang dimaksud yaitu UAA, UAG, UGA. Kodon stop tidak berikatan dengan tRNA, namun berikatan dengan protein khusus yang disebut release factors faktor pelepas. Dari proses inisiasi-elongasi-terminasi tersusun berbagai macam asam amino - asam amino yang disebut sebagai protein/polipeptida. Pelajari lebih lanjut tentang contoh sintesis protein di Protein hasil sintesis protein tersebut akan menjadi protein fungsional di dalam tubuh sel atau organisme. Berikut ini beberapa contoh protein fungsional 1. Protein hormon Hormon berfungsi sebagai pembawa pesan kimia yang mengantarkan pesan melalui aliran darah. Setiap hormon akan memengaruhi sel tertentu di dalam tubuh yang dikenal sebagai sel target. Contoh hormon adalah insulin, testosteron, tiroksin, estrogen, dan adrenalin. 2. Protein enzim Enzim berfungsi untuk biokatalisator atau mempercepat reaksi biokimia di dalam tubuh. Contoh enzim adalah ptialin, pepsin, tripsin dan lipase. 3. Protein struktural Protein struktural berfungsi sebagai komponen penting dalam membangun konstruksi tubuh dari tingkat sel maupun tubuh organisme. Contoh protein struktural adalah kolagen dan keratin. 4. Protein antibody Antibody bertungsi dalam pertahanan tubuh dari serangan benda asing seperti virus dan bakteri. Pelajari lebih lanjut tentang macam-macam protein fungsional di Detil jawaban Kelas 12 Mapel Biologi Bab Materi Genetika Kode Kata kunci sintesis protein, kodon, asam amino, tRNA, biosintesis RNA 7. Urutan nukleotida rna berikut yang terjadi selama proses transkripsi segmen dnaJawabanaPenjelasan 8. jika urutan basa pita DNA yg akn ditranskripsi adalah 5' GTCAT 3, maka urutan basa dalam RNA duta hasil transkripsi adalah 3' CAGUA '5semoga membantu 9. Jika urutan basa pita DNA yang ditranskripsi adalah 5’ GTSAT 3’ , maka urutan basa dalam RNA duta hasil transkripsi adalah GTSATmenjadi CAGUA. dimana A diubah menjadi U 10. Mana yang lebih akurat, replikasi dna atau transkripsi rna? jelaskanJawabanTeknologi DNA rekombinan yang merupakan dasar dari semua produk berbasis bioteknologi sangat ... Struktur DNA dan RNA. ... replikasi dengan akurat dan didistribusikan ke sel anak. 11. salah satu enzim yang dimiliki oleh virus HIV adalah reverse transcriptase, yang berfungsi untuk.. a. transkripsi RNA virus b. transkripsi DNA ke RNA c. transkripsi RNA dalam sel inang d. transkripsi DNA dalam genom virus e. transkripsi RNA ke DNA Reverse transcriptase adalah enzim khusus retrovirus yang digunakan untuk transkripsi RNA ke DNA. Enzim ini penting bagi retrovirus karena retrovirus hanya memiliki RNA. Transkripsi RNA ke DNA penting sehingga RNA virus dapat bergabung dengan DNA sel inang. 12. transkripsi merupakan sintesis RNA pada suatu cetakan DNA dengan menggunalan enzim Transkripsi merupakan sintesis RNA pada suatu cetakan DNA dengan menggunalan enzim RNA polimerase 13. salah satu hasil transkripsi dna adalah rna struktural yaitu, a mrnab trnac rrna d mirnae irna A. mRNA, karena mRNA yang mensintetis protein kromosom DNA menjadi RNA duta. 14. salah satu hasil transkripsi dna adalah rna struktural yaitu, a mrna b trna c rrna d mirna e irna Hasil transkripsi adalah RNAd atau MRNA a 15. jika urutan basa pada RNA-d yang di transkripsikan oleh untaian DNA sense adalah UGCUAUUGACAG maka urutan basa pada DNA sense adalah .. ACG - ATA - ACT - GTC 16. Mengapa DNA memeiliki kemampuan melakukan transkripsi membentuk RNA-d? Jelaskan! karena DNA terdiri dr rantai ganda yg bisa memisahkan diri utk membentuk mRNA/RNAd 17. Mengapa DNA memiliki kemampuan melakukan transkripsi membentuk rna-d? Jelaskan! [tex]Biomolekuler, Genetika[/tex]DNA dapat melakukan transkripsi karena RNA polimerase yang menyalin seluruh isi DNA sehingga membentuk RNA-d. 18. mengapa DNA memiliki kmampuan melakukan transkripsi membentuk RNA d?jelaskan menurut saya karena informasi genetik dicetak dalam bentuk kode DNA di dalam inti sel,sedangkan pengertian transkripsi itu sendiri adalah pembentukan mRNA dari salah satu pita DNA dengan bantuan enzim RNA polimerase,jadi DNA memiliki kemampuan transkripsi untuk membentuk RNA d/mRNA. 19. 18. Rantai DNA melakukan transkripsi sebagai berikut! RNA yang terbentuk dari hasil transkripsi di atas adalah?​Jawaban jika ada kesalahan 20. transkripsi merupakan sintesis RNA pada suatu cetakan DNA dengan menggunalan enzim enzim RNA polimerase

. 424 23 312 14 145 332 345 335

hasil transkripsi dna adalah rna struktural yaitu